Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Jiang Tu,* Tuan-Jie Li, Song-Lei Zhu, Xiang Zou and Qian Wang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.095$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-4-(4-chlorophenyl)-6-morpholinopyridine-3,5-dicarbonitrile

The title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}$, was synthesized by the reaction of malononitrile with 4-chlorobenzaldehyde and morpholine in glycol under microwave irradiation. X-ray analysis reveals that the morpholine ring is in a chair conformation. In the crystal structure, intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds form a three-dimensional network.

Comment

3,5-Dicyanopyridine derivatives exhibit a wide range of bioactivities, such as antifungal, insecticidal, herbicidal, miticidal, nematocidal and antimicrobial activity (Gante \& Lust, 1971). 2-Amino-6-substituted-amino-4-substituted-3,5-dicyanopyridines have recently been reported to exhibit a high conductance-type calcium-activated K channel opening effect (Hironori et al., 2002) and to be adenosine receptor-selective ligands (Ulrich et al., 2002), which are useful in the treatment of many diseases. As a consequence, much attention has been paid to the synthesis of these derivatives during the past 50 years. We report here the crystal structure of the title compound, (I).

(I)

The morpholine ring in (I) is in a chair conformation (Fig. 1). The dihedral angle between the pyridine and benzene planes is $66.37(6)^{\circ}$. The crystal packing shows that intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) form a three-dimensional network (Fig. 2). In addition, short intermolecular contacts exist between atoms Cl 1 and $\mathrm{N} 3(-x, 1-y, 1-z)[3.151(2) \AA]$ and between Cl 1 and $\mathrm{O} 1\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)[3.248$ (2) $\AA]$.

Experimental

Compound (I) was prepared by the reaction of malononitrile (2 mmol) with 4 -chlorobenzaldehyde (1 mmol) and morpholine

Received 18 May 2005 Accepted 20 May 2005 Online 28 May 2005

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
(1 mmol) in glycol (1 ml) under microwave irradiation for 4 min (yield 94%, m.p. 500-501 K). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{O}$
$M_{r}=339.78$
Monoclinic, $P 2_{1} / c$
$a=7.0484$ (15) \AA
$b=10.3371$ (19) \AA
$c=22.174$ (4) A
$\beta=98.547$ (6) ${ }^{\circ}$
$V=1597.6(5) \AA^{3}$
$Z=4$

Data collection

Rigaku Mercury CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.917, T_{\text {max }}=0.975$
15505 measured reflections
$D_{x}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5837
reflections
$\theta=3.2-25.3^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, light yellow
$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$

> 2922 independent reflections
> 2508 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=25.3^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-12 \rightarrow 12$
> $l=-26 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.095$
$S=1.07$
2922 reflections
225 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0388 P)^{2}\right. \\
& +0.7626 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N}^{\mathrm{i}}$	$0.86(2)$	$2.29(2)$	$3.129(2)$	$163(2)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{ii}}$	$0.91(2)$	$2.04(2)$	$2.940(2)$	$170(2)$
$\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.99	2.61	$3.478(3)$	147
Symmetry codes: (i) $-x+1,-y,-z+1 ;$ (ii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.				

Figure 2
The molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

The H atoms of the amine group were located in a difference Fourier map and were refined isotropically $[\mathrm{N}-\mathrm{H}=0.86$ (2) and 0.91 (2) Å]. All other H atoms were placed in idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (grant No. 20372057), the Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University Open Foundation (grant No. JSK011), and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 01AXL 14) for financial support.

References

Gante, J. \& Lust, S. (1971). US Patent No. 3629270.
Hironori, H., Susumu, W., Tomofumi, T., Kenichi, K., Toshio, O., Yuusuke, H. \& Chikashi, S. (2002). Japanese Patent No. 6237; Chem. Abstr. (2002), 136, 118474.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Ulrich, R., Thomas, K., Andrea, V., Walter, H., Nicole, D., Thomas, K., Klaus, D. \& Stasch, J. P. (2002). Germany Patent No. 70520; Chem. Abstr. (2002), 137, 216881.

